Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 334: 122068, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553197

RESUMO

The fabrication of highly elastic, fatigue-resistant and conductive hydrogels with antibacterial properties is highly desirable in the field of wearable devices. However, it remains challenging to simultaneously realize the above properties within one hydrogel without compromising excellent sensing ability. Herein, we fabricated a highly elastic, fatigue-resistant, conductive, antibacterial and cellulose nanocrystal (CNC) enhanced hydrogel as a sensitive strain sensor by the synergistic effect of biosynthesized selenium nanoparticles (BioSeNPs), MXene and nanocellulose. The structure and potential mechanism to generate biologically synthesized SeNPs (BioSeNPs) were systematically investigated, and the role of protease A (PrA) in enhancing the adsorption between proteins and SeNPs was demonstrated. Additionally, owing to the incorporation of BioSeNPs, CNC and MXene, the synthesized hydrogels showed high elasticity, excellent fatigue resistance and antibacterial properties. More importantly, the sensitivity of hydrogels determined by the gauge factor was as high as 6.24 when a high strain was applied (400-700 %). This study provides a new horizon to synthesize high-performance antibacterial and conductive hydrogels for soft electronics applications.


Assuntos
Nanopartículas , Nitritos , Selênio , Elementos de Transição , Antibacterianos/farmacologia , Celulose/farmacologia , Condutividade Elétrica , Hidrogéis/farmacologia
2.
J Agric Food Chem ; 72(8): 4257-4266, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354318

RESUMO

Selenium nanoparticles (SeNPs) are important and safe food and feed additives that can be used for dietary supplementation. In this study, a mutagenic strain of Saccharomyces boulardii was employed to obtain biologically synthesized SeNPs (BioSeNPs) with the desired particle size by controlling the dosage and duration of sodium selenite addition, and the average particle size achieved was 55.8 nm with protease A encapsulation. Transcriptomic analysis revealed that increased expression of superoxide dismutase 1 (SOD1) in the mutant strain effectively promoted the synthesis of BioSeNPs and the formation of smaller nanoparticles. Under sodium selenite stress, the mutant strain exhibited significantly increased expression of glutathione peroxidase 2 (GPx2), which was significantly greater in the mutant strain than in the wild type, facilitating the synthesis of glutathione selenol and providing abundant substrates for the production of BioSeNPs. Furthermore, based on the experimental results and transcriptomic analysis of relevant genes such as sod1, gpx2, the thioredoxin reductase 1 gene (trr1) and the thioredoxin reductase 2 gene (trr2), a yeast model for the size-controlled synthesis of BioSeNPs was constructed. This study provides an important theoretical and practical foundation for the green synthesis of controllable-sized BioSeNPs or other metal nanoparticles with potential applications in the fields of food, feed, and biomedicine.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Saccharomyces boulardii , Selênio , Catálise , Saccharomyces boulardii/metabolismo , Selênio/metabolismo , Selenito de Sódio , Superóxido Dismutase/genética , Superóxido Dismutase-1
3.
3 Biotech ; 13(12): 402, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37982085

RESUMO

Lignocellulose is a plentiful and intricate biomass substance made up of cellulose, hemicellulose, and lignin. Cellulose and hemicellulose are polysaccharides characterized by different compositions and degrees of polymerization. As renewable resources, their applications are eco-friendly and can help reduce reliance on petrochemical resources. This review aims to illustrate cellulose, hemicellulose, and their structures and hydrolytic enzymes. To obtain desirable enzyme sources for the high hydrolysis of lignocellulose, highly stable, efficient and thermophilic enzyme sources, and new technologies, such as rational design and machine learning, have been introduced in detail. Generally, the efficient biodegradation of abundant natural biomass into fermentable sugars or other intermediates has great potential in practical applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03819-1.

4.
Front Bioeng Biotechnol ; 11: 1167123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994362

RESUMO

In recent years, microbial conversion of inorganic selenium into an efficient and low-toxic form of selenium has attracted much attention. With the improvement of scientific awareness and the continuous progress of nanotechnology, selenium nanoparticles can not only play the unique functions of organic selenium and inorganic selenium but also have higher safety, absorption and biological activity than other selenium forms. Therefore, the focus of attention has gradually shifted beyond the level of selenium enrichment in yeast to the combination of biosynthetic selenium nanoparticles (BioSeNPs). This paper primarily reviews inorganic selenium and its conversion to less toxic organic selenium and BioSeNPs by microbes. The synthesis method and potential mechanism of organic selenium and BioSeNPs are also introduced, which provide a basis for the production of specific forms of selenium. The methods to characterize selenium in different forms are discussed to understand the morphology, size and other characteristics of selenium. In general, to obtain safer and higher selenium content products, it is necessary to develop yeast resources with higher selenium conversion and accumulation.

5.
Appl Biochem Biotechnol ; 195(3): 1823-1836, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36399304

RESUMO

This study focused on the bio-characterization of a GH38 α-mannosidase from the hyperthermophile Pseudothermotoga thermarum DSM 5069. We aimed to successfully express and characterize this thermophilic α-mannosidase and to assess its functional properties. Subsequently, recombinant α-mannosidase PtαMan was expressed in Escherichia coli BL21(DE3) and purified via affinity chromatography, and native protein was verified as a tetramer by size exclusion chromatography. In addition, the activity of α-mannosidase PtαMan was relatively stable at pH 5.0-6.5 and temperatures up to 75 ℃. α-Mannosidase PtαMan was active toward Co2+ and had a good catalytic efficiency deduced from the kinetic parameters. However, its activity was strongly inhibited by Cu2+, Zn2+, SDS, and swainsonine. In summary, this cobalt-required α-mannosidase is putatively involved in the direct modification of glycoproteins.


Assuntos
Bactérias , Manosidases , alfa-Manosidase/genética , alfa-Manosidase/química , Bactérias/metabolismo , Cinética , Manosidases/metabolismo
6.
World J Microbiol Biotechnol ; 38(11): 198, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35995888

RESUMO

Degradable polylactic acids (PLA) have been widely used in agriculture, textile, medicine and degradable plastics industry, and can completely replace petroleum-based plastics in the future. At present, polylactic acid was chemically synthesized by ring-opening polymerisation or the direct polycondensation of lactic acid, which inevitably leads to chemical and heavy metal catalyst pollution. The current research focus has gradually shifted to the development of recombinant industrial strains for the efficiently production of lactate-containing polyesters from renewable resources. This review summarizes various explorations of metabolic pathway optimization and production cost control in the industrialization of lactate-containing polyesters bio-production. In particular, the effects of key enzymes, including CoA transferase, polyhydroxyalkanoate synthase, and their mutants, culture conditions, low-cost carbon sources, and recombinant strains on the yield and composition of lactate-containing polyesters are summarized and discussed. Future prospects and challenges for the industrialization of lactate-containing polyesters are also pointed out.


Assuntos
Ácido Láctico , Poliésteres , Catálise , Ácido Láctico/metabolismo , Redes e Vias Metabólicas , Plásticos , Poliésteres/metabolismo
7.
3 Biotech ; 12(8): 176, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35855476

RESUMO

The present study focused on the characterization of a glycoside hydrolase 51 family α-l-arabinofuranosidase named TtAbf51 from thermophile Thermoanaerobacterium thermosaccharolyticum DSM 571. The recombinant TtAbf51 with 497 amino acids was successfully expressed in Escherichia coli BL21(DE3) and purified via nickel affinity chromatography, and native protein was a dimer verified by size exclusion chromatography. The TtAbf51 showed an optimum pH and temperature of 5.5 and 55 °C, and was relatively stable at pH 5.0-8.0 and up to 60 °C for 2 h of incubation. In addition, TtAbf51 was significantly inhibited by Cu2+, Zn2+ and 1 mM or 10 mM SDS. In the presence of 800 mM arabinose, the residual activity remained over 40% of the initial activity. In addition, the recombinant enzyme possessed a good catalytic effect for both synthesized and natural substrates, and the specific enzyme activity toward CM-linear arabinan reached 426.5 µmol min-1 mg-1. In summary, this study provides an α-l-arabinofuranosidase with potential in the synergistic hydrolysis of hemicellulose to fermentable sugars in applications such as liquid biofuels, food and beverages, and related industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...